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Abstract. We study the EPR correlation implied by the entangled wavefunction of the B0B
0

pair created
by the Υ (4S) resonance. The analysis uses the basis provided by the mass eigenstates B1, B2 rather than the
flavour states B0, B

0
. Data on the inclusive dilepton charge ratio are close to the expectation of quantum

mechanics, but nearly 8 standard deviations away from that of complete decoherence. Our results are
compared with those obtained in the (B0, B

0
) basis.

1 Introduction

Bertlmann and Grimus [1] have made an interesting use of
the dilepton-decay data of the neutral bottom meson pair
emitted by the Υ (4S). They focussed on a test of the two-
particle correlation characteristic of quantum mechanics,
as manifested over macroscopic distances (∼ 10−3 cm).
The tested feature of quantum mechanics is the conse-
quence of interference between the two parts of the C-odd
wavefunction

|ψ0〉 =
1√
2
|B0B

0 −B
0
B0〉, (1)

where B0 is the pseudoscalar bottom meson with bd as
its valence quark constituents. The usual framework of
the Weisskopf-Wigner approximation is assumed so that
well-defined mixtures of the states B0 and B

0
propagate

independently as B1 and B2 with masses (mj) and inverse-
lifetimes (Γj), (j = 1, 2):

|B1〉 = p|B0〉 + q|B0〉
|B2〉 = p|B0〉 − q|B0〉. (2)

Here p and q are complex constants obeying the normal-
ization condition |p|2 + |q|2 = 1, and invariance under
CPT is assumed.

The analysis hinges mainly on two experimental ingre-
dients: (i) the measured ratio of like-sign and unlike-sign
dileptons in the chain decay

Υ (4S) → B0B
0 → (`+,− + · · ·) + (`+,− + · · ·)

where ` stands for e or µ, and (ii) the mass difference
∆m = m2 −m1 which is extracted from data on B0B

0
os-

cillations. The strategy adopted by Bertlmann and Grimus
∗ Died on 28 September 1997

is to confront the data with the standard formula which is
modified by introducing a factor (1−ζ) in the interference
term. The results, as expected on the basis of other tests
of quantum mechanics to date, are quite consistent with
the prediction of quantum mechanics, i.e., with ζ = 0.
The value ζ = 1, corresponding to the extreme case of
adding probabilities for the time-dependent decays of the
two parts B0B

0
and B

0
B0 of the wavefunction of (1), is

excluded. The ∆B = ∆Q rule which provides a unique re-
lationship between the lepton charge and the parent bot-
tom flavour (as in the Standard Model) enters the analysis.

Correlation in the (B0, B
0
) basis is, however, different

from that in the (B1, B2) basis. This is readily seen by
expressing the initial state of (1) as

|ψ0〉 =
1

2
√

2pq
|B2B1 −B1B2〉, (3)

and allowing the states (of definite momenta) to evolve
to the respective decay instants.1 The interference arising
from decays of the parts |B0B

0〉 and |B0
B0〉 of (1) will

not be the same as that from decays of the parts |B2B1〉
and |B1B2〉 of (3), in spite of the similar looking forms of
(1) and (3). The reason is that a |B1,2〉 remains a |B1,2〉
on time-development, but a |B0〉 picks up a |B0〉 compo-
nent (similarly, |B0〉 picks up a |B0〉 component) on time-
development; the interference term in the (B1, B2) basis
turns out to be comparatively simple. Independently of
this simplicity, it is necessary to subject every correlation
implied by quantum-mechanics to experimental checks;

1 The assumption of CPT -invariance, whereby the constants
p and q used in defining |B2〉 become the same as those used
in |B1〉, is not necessary for the equivalence of the states given
in (1) and (3)
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the analysis in one basis is as important as that in any
other. Analysis in the (B1, B2) basis is the motivation be-
hind the present note. In the following, we multiply the
interference between the decay amplitudes of the two parts
of the state in (3) by a parameter E, so that E = 1 corre-
sponds to the validity of quantum mechanics and E = 0
corresponds to the incoherent addition of decay probabil-
ities. Obviously, E and (1 − ζ) are not identical because
the interference terms they modify are very different.

2 Correlation in the two bases

We begin with the time-evolved state starting from (3)

|ψ(t′, t)〉 =
1

2
√

2pq
[θ2(t′)θ1(t)|B2B1〉 − θ1(t′)θ2(t)|B1B2〉]. (4)

Here t′ is the proper time of the first beon (say, the one
moving into the left hemisphere in the Υ frame), and t of
the second beon; θ’s are the evolution amplitudes

θj(t) = exp
[(

−imj − Γj

2

)
t

]
; (j = 1, 2).

The double-decay distribution for the first beon to decay
into a channel denoted by β and the second to decay into
another channel α is given (apart from an irrelevant overall
constant) by

D[β(t′), α(t)] =
1

8|pq|2 |θ2(t′)θ1(t)A2βA1α

−θ1(t′)θ2(t)A1βA2α|2 (5)

where

A1α = pAα + qAα; A2α = pAα − qAα; (6)

Aα = 〈α|T |B0〉, Aα = 〈α|T |B0〉, (7)
with similar definitions for the amplitudes corresponding
to channel β.

We insert a time-independent, real parameter E (the
‘EPR factor’) in the interference between the two parts
of the state in (3), so that E = 1 leads to the result of
quantum mechanics. The case of E = 0 refers to complete
decoherence, and is called the ‘Furry hypothesis’. With
the parameter E inserted, the time dependence reads as

DE [β(t′), α(t)] =
1

8|pq|2 {|θ2(t′)θ1(t)A2βA1α|2 + |θ1(t′)θ2(t)A1βA2α|2

−2E Re[θ∗
2(t′)θ∗

1(t)A∗
2βA

∗
1αθ1(t

′)θ2(t)A1βA2α]}.(8)

In order to contrast this formula with the one obtained in
the (B0, B

0
) basis [1], we list the “physical” states |B0(t)〉

and |B0
(t)〉 which evolve from the initial |B0〉 and |B0〉

states:

|B0(t)〉 = θ+(t)|B0〉 +
q

p
θ−(t)|B0〉, (9)

|B0
(t)〉 =

p

q
θ−(t)|B0〉 + θ+(t)|B0〉, (10)

where
θ±(t) ≡ 1

2 [θ1(t) ± θ2(t)].

The corresponding decay amplitudes which are time-de-
pendent will be denoted by

Aα(t) ≡ 〈α|T |B0(t)〉 = θ+(t)Aα +
q

p
θ−(t)Aα, (11)

Aα(t) ≡ 〈α|T |B0
(t)〉 =

p

q
θ−(t)Aα + θ+(t)Aα, (12)

and similar quantities for the channel β.
In the basis provided by B0 and B

0
therefore, the

double-decay probability becomes

D[β(t′), α(t)] = 1
2 |Aβ(t′)Aα(t) − Aβ(t′)Aα(t)|2 . (13)

This expression is modified [1] by introducing the deco-
herence parameter ζ (following [2]) as

Dζ [β(t′), α(t)] =
1
2
{|Aβ(t′)Aα(t)|2 + |Aβ(t′)Aα(t)|2

−2(1 − ζ) Re[A∗
β(t′)A∗

α(t)Aβ(t′)Aα(t)]}. (14)

We emphasize that while (5) and (13) are the same,
their modified versions (8) and (14) are not. Hence there is
no relation between the parameters E and ζ, except when
quantum mechanics is valid which corresponds to E = 1
and ζ = 0. It is also to be noted that in the extreme limit of
complete decoherence corresponding to E = 0 and ζ = 1,
the two bases give different results.

Dileptonic charge ratio: To proceed further, we special-
ize the decay amplitudes of neutral beons to semileptonic
channels which are labelled by m and m, as follows:

Am = 〈mh`
+ν`|T |B0〉, (15)

Am = 〈mh`
−ν`|T |B0〉; (16)

where mh denotes a specified hadronic system having a
net negative charge, and mh denotes its CPT conjugate.
In order to construct the fraction χd of inclusive like-sign
dileptons, we first consider the decay rates into exclusive
semileptonic channels, integrate the rates over t′ and t,
and sum over channel indices. In this way we obtain the
leptonic combinations `+`+, `−`−, (`+`− + `−`+). It is
remarkable that even the inclusive time-integrated corre-
lation among the lepton charges becomes useful [3] for
testing the subtle effects of interference of a two-particle
entangled wavefunction.

Using the formula (8), we express the dilepton ratio
χd as

χd ≡ R

1 +R
(17)

R =
N(`+`+) +N(`−`−)
N(`+`−) +N(`−`+)

(18)

=
1 − aE

1 + aE

· |p/q|
2 ∑

m,n |AmAn|2 + |q/p|2 ∑
m,n |AmAn|2∑

m,n |AmAn|2 +
∑

m,n |AmAn|2 , (19)
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where for the sake of brevity we used

a ≡ 1 − y2

1 + x2 , (20)

and the mixing parameters x and y are defined as usual:

x =
m2 −m1

Γ
, y =

Γ2 − Γ1

2Γ
, Γ =

Γ1 + Γ2

2
. (21)

We now use a consequence of CPT invariance which
states that the total semileptonic decay widths of the par-
ticle and its antiparticle are equal,

∑
m

|Am|2 =
∑

n

|An|2,

provided we retain the weak Hamiltonian to first order
and neglect the final state interactions due to electroweak
forces. Using this result we obtain the formula for the
likesign dilepton ratio,

χd =
u(1 − aE)

(1 + u) + (1 − u)aE
, (22)

u ≡ 1
2
[|p/q|2 + |q/p|2] . (23)

The parameter E can be determined

E =
1 + x2

1 − y2 ·
[
1 − 2χd

u+ (1 − u)χd

]
, (24)

by using the current experimental information on u, χd,
x and y.

3 Experimental information

We note that it is adequate to replace the parameter u by
unity in (24): The dilepton charge asymmetry a`` at the
Υ (4S) measured by the CLEO group [4] is

a`` ≡ N(`+`+) −N(`−`−)
N(`+`+) +N(`−`−)

= (3.1±9.6±3.2)×10−2. (25)

As this asymmetry is expressible [5] in terms of the mixing
parameters that define the mass eigenstates,

a`` =
|p|4 − |q|4
|p|4 + |q|4 ,

the experimental number implies that

u =
1√

1 − a2
``

' 1 +
1
2
a2

`` (26)

' 1.0005 ± 0.031 . (27)

Consequently it is safe to use

u ' 1 , (28)

since the remaining parameters in (24) are known to much
lower precision.

For the fraction χd, we take the average value given
by the ARGUS [6] and CLEO [4] collaborations (see, the
number called ‘our average’ on p. 506 of [7]),

χd = 0.156 ± 0.024 . (29)

This result is based on Υ (4S) data; it does not use the
∆m from experiments on oscillations following Z decays.

For the value of x, we use the mass-difference ∆m ex-
tracted from the time-dependence of B0

dB
0
d oscillations

in Z decays. It should however be emphasized that ev-
ery oscillation experiment has backgrounds peculiar to it
and their subtraction depends on the use of different algo-
rithms. Background estimates and simulations do use the
Standard Model, not to mention the framework provided
by quantum mechanics; e.g., the jet-charge technique is
based on modelling the b-quark fragmentation into a jet.
Does it mean that in obtaining the experimental ∆m, the
theory we want to test is already used? The answer is
“most probably not”: The oscillating B’s are created in-
coherently through the inclusive decays Z → Bd + . . .,
while our focus is on a correlation relating to the coher-
ence of a two-particle C-odd wavefunction.

Notwithstanding the above remark it is necessary to
follow a conservative approach so that the results do not
depend much on background estimates and related issues.
For the present therefore, one may like to deal with data
having a clean sample of identified Bd decays, as for in-
stance in the data in which the semileptonic decays of Bd

are reconstructed as completely as possible, although this
would entail a considerable loss in statistics. The OPAL
group [8] reported a sample of 1200 D∗±`∓ candidate
events, of which 778±84 were supposed to be arising from
the decays Bd → D∗(2010)`νX. The production flavour
was determined by the jet charge method. Multiplying the
∆m obtained in this experiment by the average lifetime
of the Bd meson [7], we obtain

xOPAL = (0.539 ± 0.060 ± 0.024)ps−1 ·(1.56 ± 0.06)ps (30)
= 0.84 ± 0.11, (31)

where we have added the statistical and systematic errors
in quadrature.

On substituting (28), (29), and (31) in (24), we obtain

E =
1.17 ± 0.15

1 − y2 . (32)

At present there is no direct experimental information on
the parameter y. It is generally surmised that its magni-
tude cannot exceed a few percent mainly because there ex-
ists no flavourless channel into which both Bd and B

0
d de-

cay dominantly. But fortunately, even values like |y| ' 0.1
hardly matter, as the correction to E is only quadratic in
y. We may therefore set y = 0 to obtain

E = 1.17 ± 0.15. (33)
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This value of E is consistent with E = 1 dictated by quan-
tum mechanics, and is about eight standard deviations
away from the Furry hypothesis (E = 0).

On the other hand, following [1], we might assume the
validity of quantum mechanics (E = 1) and determine y
from (32); the resulting bound is not restrictive: |y| ≤ 0.28
at 90% confidence level.

To what value of ζ does our result in (33) correspond?
For y = 0 and u = 1, we express the likesign dilepton
fraction χd in terms of ζ to get

ζ =
[
2χd − x2

1 + x2

]
(1 + x2)2

x2 = −0.42 ± 0.31 . (34)

The numerical value, which results from the substitution
of (29) and (31), is comparable to the one standard-devi-
ation limit ζ ≤ 0.26 of [1]. If we evaluate E from (24)
using the data quoted in [1] (x = 0.74 ± 0.05 and χd =
0.159 ± 0.031 along with y = 0 and u = 1), we would
obtain E = 1.06 ± 0.11.

4 Discussion

The use of y = 0 for getting the result in (33) is required
by internal consistency since y = 0 is assumed in the de-
termination of ∆m which is used in (30).

The (B1, B2) basis turns out to have a greater sensi-
tivity to possible modifications of the interference term as
compared to the (B0, B

0
) basis. Using y = 0, the interfer-

ence term in (8) with E = 1, is [(x2 +1)/x2] times that in
(14) with ζ = 0, if t and t′ are fully integrated and if the
decay channels considered are as required for the observ-
able χd. Using (31) for x, this is a factor of (2.42 ± 0.36)
in favour of the (B1, B2) basis.

The (B1, B2) basis has a slight edge over the (B0, B
0
)

basis if possible violations of the ∆B = ∆Q rule are al-
lowed. If the amplitudes for these violations are retained
to only the first order, the result in (22) is not modified
for any E. In contrast, the corresponding result in the
(B0, B

0
) basis is modified. However, these modifications

must be proportional to ζ. The reason is that for ζ =
0, (14) is identical to (8) for E = 1; there is then no
modification at this matching point. Since ζ and possible
violations of the ∆B = ∆Q rule are both presumably
small, this particular preference for the (B1, B2) basis is
of only a limited importance.

In summary, data on the dileptonic decays of the B0
dB

0
d

pair belonging to Υ (4S) are analysed for possible viola-
tions of the two-particle correlation which occurs in quan-
tum mechanics. This is done in the basis provided by the
mass eigenstates |B1〉 and |B2〉. Because of the stronger
interference term, this basis provides a greater sensitivity
to possible modifications of the quantum-mechanical two
particle correlations. Our result, (33), is completely consis-
tent with quantum-mechanics, but disfavours the hypoth-
esis of complete decoherence. Although our use of certain
consequences of CPT invariance in B decays may be in-
nocuous, the generality of our result is reduced by the use
of the Weisskopf-Wigner approximation.
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